Новая защита для промышленных и медицинских изделий

Учёные Тольяттинского государственного университета (ТГУ) вывели на качественно новый уровень технологию плазменно-электролитической обработки. Это позволит управлять её производительностью и свойствами керамических слоёв, формируемых на поверхности изделий, применяемых в энергетическом и химическом машиностроении, медицине и других областях промышленности, а главное, надёжно прогнозировать ожидаемые эффекты от варьирования параметров обработки.

Плазменно-электролитическое оксидирование (ПЭО) используется для создания защитных керамических оксидных покрытий (слоёв) на изделиях из лёгких сплавов, работающих в экстремальных условиях. Изучением и усовершенствованием технологии ПЭО в Тольяттинском госуниверситете занимаются при поддержке Российского научного фонда в научно-исследовательском отделе (НИО) «Оксидные слои, плёнки и покрытия» под научным руководством профессора, доктора физико-математических наук Михаила Криштала при участии ведущего научного сотрудника Израильского политехнического института (Технион) физика-теоретика, PhD Александра Кацмана.

– Направленный поиск оптимальных решений (подбор параметров ПЭО) затруднён отсутствием чёткого понимания физических основ формирования таких покрытий. Поэтому создание физической модели ПЭО как совокупности физических явлений остаётся высоко актуальной задачей, – говорит Михаил Криштал. – В то же время технология ПЭО не так давно была молицирована путём введения в электролит различных керамических наночастиц. Поскольку возникающие при этом синергетические эффекты, фактически, привели к появлению новой ещё более эффективной технологии гибридной плазменно-электролитической обработки (ГибПЭО), это ещё более усложнило понимание физики процесса. Исследования ПЭО с добавками наночастиц активно ведутся во всем мире с нарастающей интенсивностью в последние 5-10 лет. По сути идёт период накопления информации, причём в достаточно хаотичном режиме. Поэтому мы почувствовали острую необходимость обобщения своих и других известных результатов для выхода на качественно иной уровень исследований и разработок.

В итоге исследователи ТГУ разработали теорию, которая позволяет описать и количественно предсказать семь видов взаимодействия частиц с оксидным слоем, и доказали её состоятельность, проведя многочисленные эксперименты, а также обобщив данные других исследователей из сотни источников.

– В нашей работе обобщены и теоретически обоснованы общие и отличительные особенности механизмов взаимодействия наночастиц с оксидным покрытием, формируемым методом ГибПЭО на лёгких сплавах. Мы использовали в основном силумины (сплавы алюминия с кремнием) и сплавы на основе магния при их ГибПЭО с наночастицами карбида титана, диоксида кремния и диоксида циркония. Однако обобщение распространяется и на другие материалы и частицы, – поясняет начальник лаборатории структурно-фазового анализа НИИ прогрессивных технологий ТГУ. кандидат технических наук Антон Полунин.

Исследователи показали, что взаимодействие заряженных керамических ускоренных электрическим полем наночастиц с оксидным слоем определяется трансформацией кинетической энергии наночастиц в нагрев и пластическую деформацию, в фазовые превращения, а также в создание новых поверхностных дефектов. Одним из основных контролирующих факторов стало соотношение твёрдости частиц и оксидного слоя, а также поверхностного заряда на частицах.

– В случае подробно рассмотренного в работе взаимодействия частиц диоксида кремния с оксидным слоем, формируемым на силуминах, образующееся покрытие оказывается твёрже керамических наночастиц, а в остальных случаях наоборот – наночастицы оказываются твёрже оксидного слоя. Это определило две основные группы сценариев взаимодействия наночастиц с покрытием, формируемым при ГибПЭО, – говорит Михаил Криштал. – Но сценарии зависят не только от соотношения твёрдости слоя и добавляемых частиц, а также от распределения введённых в электролит частиц по размерам, от температурно-барических условий фазовых превращений в наночастицах (включая условия их расплавления) и от основных параметров процесса ПЭО.

В итоге учёные с единых позиций описали семь 7 различных сценариев взаимодействия добавленных в электролит керамических наночастиц с оксидным слоем при его формировании методом ГибПЭО.

– Поскольку в электролите всегда присутствуют частицы не одного размера, а в некотором диапазоне размеров – как правило от 10-30 до 100 нм и более – это определяет возможность одновременной реализации до четырёх сценариев взаимодействия наночастиц с оксидным слоем. Синергизм гибридной обработки проявляется в несводимости получаемых эффектов к простой сумме плазменно-электролитического воздействия на материал и добавок наночастиц в электролит – малое количество вводимых частиц (как правило в диапазоне 0,3–3 г/л электролита) приводит к кратным и многократным эффектам, – отмечает Михаил Криштал

В конечном итоге, с помощью наночастиц при ГибПЭО удаётся в разы повысить износостойкость покрытий и в десятки раз их коррозионную стойкость, а также сократить время обработки и энергоёмкость процесса в несколько раз. Таким образом, эффективность технологии повышается многократно.

Результаты своей работы учёные представили в статье, которая была опубликована в Ceramics International – высокорейтинговом научном журнале, освещающем науку о современных керамических материалах (Q1 по SJR, IF 2024 – 5,2, индексируется Scopus).

Работа выполнена при поддержке РНФ (проект № 21-19-00656) в рамках передовой инженерной школы «Гибридные и комбинированные технологии», созданной ТГУ в 2023 году при поддержке высокотехнологичных компаний, включая генерального партнёра АО «АВТОВАЗ».